8-inch Substrate Mass Production in 2H22, 3rd Gen Power Semiconductor CAGR to Reach 48% by 2025, Says TrendForce
SiC is suitable for high-power applications, such as energy storage, wind power, solar energy, EVs, new energy vehicles (NEV) and other industries that utilize highly demanding battery systems. Among these industries, EVs have attracted a great deal of attention from the market. However, most of the power semiconductors used in EVs currently on the market are Si base materials, such as Si IGBT and Si MOSFET. However, as EV battery power systems gradually develop to voltage levels greater than 800 V, compared with Si, SiC will produce better performance in high-voltage systems. SiC is expected to gradually replace part of the Si base design, greatly improve vehicle performance, and optimize vehicle architecture. The SiC power semiconductor market is estimated to reach US$3.39 billion by 2025.
GaN is suitable for high-frequency applications, including communication devices and fast charging for mobile phones, tablets, and laptops. Compared with traditional fast charging, GaN fast charging has higher power density, so charging speed is faster within a smaller package that is easier to carry. These advantages have proven attractive to many OEMs and ODMs and several have started rapidly developing this material. The GaN power semiconductor market is estimated to reach US$1.32 billion by 2025.
TrendForce emphasizes that third generation power semiconductor substrates are more difficult to manufacture and more expensive compared to traditional Si bases. Taking advantage of the current development of major substrate suppliers, companies including Wolfspeed, II-VI, and Qromis successively expanded their production capacity and will mass-produce 8-inch substrates in the 2H22. Output value of third generation power semiconductors is estimated to have room for continued growth in the next few years.