IBM Osprey Processor Brings 433 Qubits to Power Modular Quantum Supercomputers
[ad_1]
Called IBM Osprey, it features IBM’s 433 qubits cooled to cryogenic temperatures and in a controlled environment. While the computational power of the processor seems to be rather impressive, it is still a noisy quantum implementation that is sensitive to outside noise and requires exceptionally low temperatures to operate, such as -273 Degrees Celcius. To combat some of those obstacles, Osprey adds multi-level wiring to provide flexibility for signal routing and device layout while also adding integrated filtering to reduce noise and improve stability. Concurrently, IBM developed new signal delivery wiring that is 70% cheaper and produces the same result, driving up the ability to commercialize this design. For performance, IBM managed to increase quantum volume four times from 128 to 512 and a 10x improvement in Driving quantum performance from 1.4k to 15k Circuit Layer Operations Per Second (CLOPS).
Interestingly, the company has been teasing the shipment of its modular system called IBM Quantum System Two, which is supposed to be unveiled during Quantum Summit 2023 next year. In the video below, we can see a preview of the overall infrastructure and its ability to deploy additional hardware using cryostats and long-range couplers for processor interconnection.
[ad_2]